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ABSTRACT

We study the problem of posterior sampling using pretrained discrete diffusion
foundation models, aiming to recover images from noisy measurements without
retraining task-specific models. While diffusion models have achieved remarkable
success in generative modeling, most advances rely on continuous Gaussian dif-
fusion. In contrast, discrete diffusion offers a unified framework for jointly mod-
eling categorical data such as text and images. Beyond unification, discrete diffu-
sion provides faster inference, finer control, and principled training-free Bayesian
inference, making it particularly well-suited for posterior sampling. However, ex-
isting approaches to discrete diffusion posterior sampling face severe challenges:
derivative-free guidance yields sparse signals, continuous relaxations limit appli-
cability, and split Gibbs samplers suffer from the curse of dimensionality. To
overcome these limitations, we introduce Anchored Posterior Sampling (APS) for
masked diffusion foundation models, built on two key innovations—quantized ex-
pectation for gradient-like guidance in discrete embedding space, and anchored
remasking for adaptive decoding. Our approach achieves state-of-the-art per-
formance among discrete diffusion samplers across linear and nonlinear inverse
problems on the standard benchmarks. We further demonstrate the benefits of our
approach in training-free stylization and text-guided editing.

1 INTRODUCTION

Diffusion models have become the state-of-the-art across a wide range of generative tasks, includ-
ing images (Ramesh et al., 2021; Rombach et al., 2022; Baldridge et al., 2024; Esser et al., 2024;
Black Forest Labs, 2024), audio (Huang et al., 2023; Veo, 2025), and video (Singer et al., 2023;
OpenAl, 2024; Veo, 2025). Most of this progress has been driven by continuous diffusion models,
where Gaussian noise is gradually added in pixel or latent space and then reversed by a learned
denoiser (Sohl-Dickstein et al., 2015; Ho et al., 2020). Recently, however, discrete diffusion has
emerged as a powerful alternative, showing superior performance in modeling categorical distribu-
tions such as text (Lou et al., 2024; Sahoo et al., 2024; Shi et al., 2024; Nie et al., 2025; Rout et al.,
2025a) and images (Shi et al., 2024; Yang et al., 2025). Discrete diffusion further enables a unified
framework for both image and text generation, supporting multimodal generation and editing.

Beyond unification, discrete diffusion offers several advantages over continuous diffusion that are
particularly relevant for posterior sampling. First, it achieves faster inference, often generating high-
quality samples in significantly fewer reverse steps (Shi et al., 2024; Schiff et al., 2025; Ma et al.,
2025). Second, it provides finer control: the model predicts a normalized categorical distribution
per token (e.g., a pixel or a patch), which decouples different parts of the image, unlike Gaussian
diffusion where the entire image is coupled. Third, it enables training-free posterior sampling:
since the model outputs full conditional distributions at each step, these can be reweighted by the
likelihood to yield a better posterior estimate posterior (Murata et al., 2024; Chu et al., 2025). This
property unlocks precise image editing and solving inverse problems without additional training
(§4), motivating our approach to use discrete diffusion model (Yang et al., 2025) as a prior.

*This work was done during an internship at Google.
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Figure 1: We introduce Anchored Posterior Sampling (APS) for masked diffusion foundation mod-
els, built on two key innovations: (i) quantized expectation, which provides gradient-like guidance
in discrete embedding space, and (ii) anchored remasking, which enables adaptive decoding. Our
method supports a variety of linear and nonlinear image restoration tasks (left three columns), as
well as mask-based garment styling and reference-guided style transfer (last column).

State-of-the-art posterior samplers (Rout et al., 2023; 2024; Chung et al., 2024; Zhang et al., 2025)
use continuous diffusion as a prior. These approaches rely on guiding the reverse diffusion process
using likelihood gradients in continuous latent spaces (Rout et al., 2023; 2024; Chung et al., 2024;
Zhang et al., 2025). This is infeasible for discrete diffusion due to non-differentiability in token
space. Derivative-free discrete methods (Li et al., 2024) inspired by reinforcement learning provide
weak signals. G2D2 (Murata et al., 2024) uses Gumbel-softmax relaxation but it is limited to discrete
tokens with continuous embeddings. SGDD (Chu et al., 2025) introduces a split Gibbs sampler, but
suffers from exponential complexity in sequence length (Chewi, 2023). Moreover, these methods
unmask tokens in random order, which is suboptimal compared to adaptive decoding strategies
in language modeling (Yang et al., 2025; Rout et al., 2025a). These limitations underscore the
need for a discrete diffusion posterior sampler with adaptive decoding, leveraging next-generation
multimodal models (Yang et al., 2025; Gemini Team, 2024).

Existing discrete diffusion methods explore posterior sampling under uniform (Chu et al., 2025) or
mixed-noise processes (Murata et al., 2024), but these methods are tied to specific noising schemes
and lack generalization (§4). Meanwhile, recent advances show that masked diffusion achieves
state-of-the-art performance in image generation (Ma et al., 2025; Yang et al., 2025), yet its po-
tential for posterior sampling remains underexplored. In this work, we take the first step towards
leveraging multimodal masked diffusion models such as MMaDA (Yang et al., 2025) for posterior
sampling. We introduce two key algorithmic innovations: (i) quantized expectation, which pro-
vides gradient-like guidance in purely discrete embedding space by updating the full conditional
probability table (§ ), and (ii) anchored remasking, an adaptive inference strategy that decodes
important “anchor” tokens early in the reverse process (§ ). Together, these techniques over-
come the non-differentiability challenge in discrete diffusion and yield scalable posterior samplers.
Extensive experiments (§4) show up to 31.36% LPIPS and 7.05% PSNR improvements on linear
and nonlinear inverse problems, and illustrate training-free stylization results, as shown in Figure 1.

Our contributions are summarized below.

* Theoretical results: we derive (i) a training upper bound, Lppps (Theorem 3.1), that integrates
measurements into the reverse diffusion process, and (ii) a test-time bound, £ ps (Theorem 3.2),
that reuses a pretrained denoiser without expensive retraining per downstream task (§3).

* Quantized expectation: a novel strategy to update all entries of the conditional probability table,
enabling strong gradient-like guidance in the discrete embedding space (§ ).

* Anchored remasking: an adaptive decoding strategy that unmasks “anchor” tokens early in the
reverse process, better utilizing model’s capacity to decode remaining tokens (§ ).

» Extensive experiments: comprehensive evaluation on linear (super resolution, Gaussian deblur-
ring, inpainting, motion deblur) and nonlinear (HDR, nonlinear deblurring) inverse problems on
FFHQ and ImageNet, where our method achieves up to 35.82% LPIPS and 10.94% PSNR gains
on ImageNet super resolution (4x), and 31.36% LPIPS and 7.05% PSNR gains on FFHQ, over
the prior state-of-the-art discrete sampler. We further demonstrate training-free stylization enabled
by our discrete posterior sampler, highlighting flexibility beyond inverse problems (§4).
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2 RELATED WORKS

Gaussian pixel-space diffusion methods (Chung et al., 2023; Kawar et al., 2022; Zhu et al., 2023)
address noisy inverse problems by guiding the reverse process of diffusion models trained directly
in pixel space. These priors are domain-specific—for instance, a model trained on ImageNet must
be used for ImageNet tasks, and one trained on FFHQ for FFHQ tasks—yielding highly informative
but narrow priors. Mixing domains during training dilutes this information, and at the extreme of
internet-scale training, the prior remains valid for generation (Ramesh et al., 2021; Baldridge et al.,
2024; Esser et al., 2024; Black Forest Labs, 2024) but becomes less informative for specific domains.
This motivates the challenge of extracting domain-relevant information from general-purpose priors.

Gaussian latent diffusion. PSLD (Rout et al., 2023) introduced posterior sampling with latent diffu-
sion, showing how domain-specific priors can be extracted from large-scale foundation models. This
initiated a new line of work (Chung et al., 2024; Song et al., 2024; Rout et al., 2024; 2025b; Noroozi
et al., 2024; Zhang et al., 2025; Chung et al., 2025) leveraging the advantages of latent diffusion: a
single pretrained model can handle multiple domains, enabling inverse problems and semantic edits
without retraining, while also being faster and more scalable to high-resolution synthesis. A draw-
back, however, is that posterior sampling often requires backpropagation through large denoisers
(e.g., Flux (Black Forest Labs, 2024), SD3.5 (Esser et al., 2024)), which is prohibitively slow. RB-
Modulation (Rout et al., 2025¢) alleviates this by framing the problem as stochastic optimal control,
directly optimizing the terminal latent state and reducing runtime from several minutes (PSLD: ~12
min, P2L: ~30 min, STSL: ~3 min) to under 40 seconds. This efficiency relies on continuous,
differentiable latent embeddings, a property that does not extend to discrete diffusion. Addressing
this gap motivates the need for new posterior sampling approaches in discrete settings.

Uniform discrete diffusion. Recent works have explored posterior sampling with discrete diffusion.
G2D2 (Murata et al., 2024) extends the proximal sampler of RB-Modulation to VQ-diffusion (Gu
et al., 2022) using a star-shaped noising process and Gumbel-Softmax dequantization (Gumbel,
1954; Jang et al., 2017; Maddison et al., 2017). While it enables gradient guidance, G2D2 depends
on continuous relaxations, requires storing log-probabilities from previous step, and struggles to
generalize to purely discrete token embeddings (§4). SGDD (Chu et al., 2025) instead proposes
a split Gibbs sampler with Hamming-distance reweighting and rejection sampling via Metropo-
lis—Hastings, but its exponential rejection rate restricts results to low-resolution tasks.

Masked (absorbing) discrete diffusion. While G2D2 and SGDD can, in principle, be adapted
to masked diffusion, they perform poorly with purely discrete token embeddings. In contrast, our
method leverages a unified masked discrete diffusion model and introduces two key components:
quantized expectation (§ ) and anchored remasking (§ ). Together, these yield an efficient
and scalable posterior sampler for high-resolution inverse problems. To our knowledge, this is the
first inverse problem solver tailored for masked discrete diffusion with purely discrete embeddings,
outperforming prior discrete samplers and remaining competitive—often superior—to continuous
diffusion methods at substantially lower inference cost (§4).

3 METHOD

3.1 PRELIMINARIES

Visual Tokenizer. A cornerstone of modern image tokenization is the VQ-VAE (Van Den Oord
et al., 2017), which maps images into discrete codebook indices. It consists of an encoder £ :
RAXWx3 _, Rhxwxd that projects an image into a latent embedding of size h x w x d. The
embeddings are reshaped into a sequence e € RZ*9 of length L = h x w. We denote images by
%. The encoder produces e = £(%) where each embedding €' for [ = 1,..., L is quantized to the

nearest codebook entry c; € C, where C € RE*4 5 a learned codebook:
qu(el) =c¢j, Jj= argmin Hel — CkHz' (D
ke{l,...,K}

Codebook entries may be continuous vectors c; € R? or purely discrete binary embeddings
c; € {—1,+1}¢ used in this paper. Binary embeddings are particularly appealing because prior
studies (Yu et al., 2024) show that masked diffusion models degrade in generation quality as contin-
uous vocabulary size grows, yet lookup-free quantization (LFQ) with binary embeddings achieves
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both strong generation and reconstruction quality. In LFQ, the codebook is not learned but obtained
by thresholding the encoder output:

NP I +1 ifelfi] >0,
Qiiq(e') == sign(e’), where [Qiq(€')]; = {_1 otherwise. 2
Finally, each image is represented as a sequence of tokens z = (x!,...,z) corresponding to

the selected indices from (1) as 2! = 7, or equivalently for LFQ the token index is obtained by

=4 = Zle 2" ¢, 4150} Equivalently, we represent each sequence as a mixture of one-hot

vectors x = (x!,...,x%), where Y"1 x![k] = 1,x'[k] > 0 and x'[z] = 1. This discrete token
representation forms the basis of our masked diffusion posterior sampler.

Notation: We use =" to indicate architectural and parameterization choices in our model, to distin-
guish from ‘=’ which are identities that follow from mathematical derivations.

Masked Diffusion. We now describe masked discrete diffusion, which defines a generative model
over the discrete state space S = VI, where V = {1,..., K, K + 1} consisting of K codebook
indices and a special [MASK] token m corresponding to index K +1. Let X = {xl}le € S denote
a sequence of tokens (or equivalently its one-hot representation x = {x'} £ 1). The data distribution
is denoted by ¢(+) over S. The goal of masked diffusion is to learn a generative model that samples
from ¢(-). Masked diffusion models (MDMs) (Austin et al., 2021; Lou et al., 2024; Shi et al., 2024;
Sahoo et al., 2024) construct a discrete-time Markov chain with 7" steps, parameterized by «; with
t € [0,1]. The forward process gradually replaces each token with the [MASK] token:

q(z¢|x) = Hq (z|x), q(z}|x) = Cat(zi; ax! + (1 - o)m), 3)

where z! is either preserved from x! with probability a; or replaced with m otherwise. The cor-
responding reverse process is parameterized by a neural network py, which predicts categorical
distributions over tokens. For each token position [, the transition distribution is

Cat(zl;zl), zl # m,
l R A=) _
p@(zs|zt) = q(Zs|Zt7X9(Zt)) - {Cat( . ozs ath(Zt) + 1 —Q 1’1’1) Zfﬁ =m,

“4)

where xp(z;) denotes the network prediction. Training minimizes the negative evidence lower
bound (NELBO) by aligning the reverse transition py (2., |z;) with the inference posterior ¢(z’|z!, x)
derived from the forward process (3). Concretely, the training objective LNeLBO(X;0) =

o — O
E zomq(1x) | — 10g po (x| Zo)] +Z]EZ,~(1 (%) [tizlog x})(Z), l>1{zg:m}, (5)
i=1

where, for brevity, we drop 7 from ¢(¢) = ¢/T and s(i) = (i — 1)/T.
3.2 TEST-TIME ANCHORED POSTERIOR SAMPLING

This section develops our theoretical framework for posterior sampling with discrete diffusion. We
first derive a training-based objective (Theorem 3.1) that incorporates measurements into the re-
verse diffusion process, and then present a lightweight test-time training bound (Theorem 3.2) that
reuses a pretrained denoiser without retraining. Building on this, we introduce two key mecha-
nisms—Quantized Expectation (§ ) for differentiable likelihood evaluation and Anchored Re-
masking (§ ) for adaptive unmasking—that enable scalable and accurate posterior sampling.

In posterior sampling, our goal is to construct a Markov chain whose stationary distribution coin-
cides with the Bayesian posterior: ¢(x|y) « ¢(y|x)g(x), where y = A(D(x)) + o with mea-
surement operator .A(-), image decoder D(-), Gaussian noise ¢ ~ A (0, I), and standard deviation
o. When A is linear the task reduces to a linear inverse problem; otherwise a nonlinear inverse
problem. We approximate ¢(x|y) with a tractable sampler p,,(x|y) using only a masked diffusion
model py(x) previously trained to approximate g(x).

To sample from the posterior g(-|y), we construct a Markov chain with the joint distribution defined

T
as: P@(X, Zo:1|_}’) = p<,a(z1|y) p¢(x\gq, y) Hi=1_17_<p (zs(i) \Z.t(@), Y), where zg.1 = 20,Z1/T -5 21-
We parameterize measurement conditional transitions by tilting the y-unconditional transition (4)
with the likelihood of measurements given the current estimate:
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(25|21, y) - Hpga z4|zs,y), where p,(24|z:,y) = d(z|2;, X (20)) d(y % (21)).  (6)

Theorem 3.1 (Discrete Diffusion Posterior Sampling (DDPS)). Given a sample x ~ q, let ¢(Zp.1|x)
denote the forward noising law of (3). Then, for any measurement 'y ~ q(:|x), the negative log-
posterior is bounded by —log p,,(X|y) < Lpopps(X,¥;¥) = Eq(z,.,x) [~ 10g e (x| Zo)]+

T T
@ S 7
> gz |2 ng Lzt | =D Btz [ 108 40y ()]
=1

1—a ‘
=1

Implications. Theorem 3.1 shows that Lppps (X, y; ) is a principled training criterion for discrete
posterior samplers. The likelihood-based tilt log ¢(y|x,(Zy(;))) enforces measurement consistency
When y is absent, the tilting terms vanish and the objective reduces to the standard masked diffusion
NELBO (5). The negative cross-entropy term log<xiJ (Zy(4)), x") is zero for revealed tokens and gets
supervision for masked tokens, with weights determined by the noise schedule.

For retraining, one can minimize Lppps(X,y; ) with respect to ¢ to obtain a discrete posterior
sampler. In practice, however, retraining a large-scale foundation model per task is often infeasible
due to excessive compute and lack of training data. We therefore focus on the training-free case.

Theorem 3.2 (Test-time Anchored Posterior Sampling (APS)). Given a sample x ~ q, let ¢(Zp.1|x)
denote the forward noising law of (3). Suppose the pretrained network pg(x) closely approximates
the unconditional prior q(x). Then, for any measurement'y ~ q(-|x), the negative log-posterior is
bounded by —log p,,(x|y) < Laps(x,y; ) = LxeLpo(X;0)+

L l T

— x ), xh)
ZEq(Zt()\x { 1) > log 97>1{Zi(i):m}:|_Z]Eq(Zt(i)\x)[IOgQ(y|X4P(Zt(i)))]'

1 — o) =1 Xfp Zy(iy), x i1

Implications. Theorem shows that posterior sampling can be performed without retraining by
reusing a pretrained masked diffusion model.

* Efficient test-time training. The bound Laps(x,y;®) is expressed in terms of the pretrained
NELBO from (5). Since this term is constant with respect to the new parameters ¢, it can be
ignored during optimization. As a result, test-time training only needs to update the lightweight
adaptation and measurement-consistency terms, while reusing the fixed pretrained network x4(+).
This avoids backpropagation through the large-scale denoiser (e.g., billions of parameters), mak-
ing posterior sampling feasible and efficient at test time.

* Training-free inference. Although efficient test-time training requires paired (x,y) data, in poste-
rior sampling we only observe y. Interestingly, the bound £apg points to training-free inference
by substituting the pretrained model prediction xl(,(Zt(i)) in place of x' (see § ). This makes
posterior sampling feasible directly from measurements, without retraining or labeled pairs.

* Adaptation gap. The log-ratio terms capture the mismatch between unconditional predictions
%9 (Zy(;y) and adapted posterior predictions x,,(Zy(;)), active only at masked positions.

* Measurement consistency. The final summation enforces agreement with the measurement likeli-
hood, ensuring the sampler produces samples consistent with observed measurements y.

Discussion. In summary, retraining a new network ¢ for every task would require backpropagation
through massive denoisers (e.g., 8B parameters in MMaDA), which is computationally prohibitive.
Our theoretical results show that posterior sampling can be done efficiently by reusing the pretrained
model and optimizing only lightweight parameters at test time. Next, we introduce two key ingredi-
ents—Quantized Expectation (§ ) and Anchored Remasking (§ )—that make this training-
free posterior sampling practically implementable. These two ideas together form our Algorithm
Anchored Posterior Sampling (APS); please see Appendix for a detailed discussion.

3.2.1 QUANTIZED EXPECTATION

We propose quantized expectation to compute log ¢(y|X,(Z(;))) in a differentiable manner. Build-
ing on the training-free inference implication of Theorem 3.2, we note that in posterior sampling
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Table 1: Quantitative results on Super Resolution (4 x) and Gaussian Deblurring. APS consis-
tently outperforms prior discrete samplers (G2D2, SGDD, and SVDD-PM) and remains competitive

with strong continuous diffusion baselines (shaded ).
(a) FFHQ (b) ImageNet
Type Method SR (4x) Deblur SR (4x) Deblur
LPIPS| PSNR{ LPIPS| PSNR+ LPIPS| PSNRt LPIPS| PSNR{

Pixel DPS 0269 2586 0219 2587 0367 2261 0.443 19.04
DDRM 0.282 26.58 0.239 24.93 0.352 24.00 0.246 27.30
DiffPIR 0.260 26.64 0.236 27.36 0.371 23.18 0.355 22.80
DAPS 0.177 29.07 0.165 29.19 0.276 25.89 0.253 26.15

Latent PSLD 0.276 27.62 0.304 27.37 0.332 24.43 0.365 24.04

ReSample 0.507 22.98 0.329 25.69 0.382 22.63 0.438 22.32
LatentDAPS ~ 0.182 27.48 0.234 27.93 0.276 25.06 0.345 25.05

Uniform (Mask) SVDD-PM 0.594 12.08 - - - - - -
G2D2 0.271 26.93 0.287 26.35 0.349 23.20 0.375 22.71

SGDD 0.288 25.85 - - - - - -
Mask APS 0.234 27.50 0.276 27.90 0.324 24.30 0.375 24.71
APS-L 0.186 28.83 0.241 29.50 0.224 25.74 0.282 26.35

only the measurements y are observed. Hence, we replace the ground-truth token x’ with the token
mixture predicted by the pretrained model x), (Zy(iy)» which simplifies the upper bound to

at 7
Laps(x,y; 0 ZIE (Zioh) | )—at( ; i) Zlog (Zuii)) s x6(Zuiy)) Lz, =m}
=1
= 3 By 108 605 o Zi )] + constants. @
=1

The measurement likelihood takes the form ¢(y|x) o< exp(— % ), where D(-) denotes the

image decoder. The denoiser outputs token probabilities x,(z(;)) = {xlw (2¢(s)) }—; - Since D takes
a sequence of discrete tokens (or their one-hot encodings) as input, a naive approach would sample

x = (x',...,xF) ~ X, (Z¢(s)) and compute q(y|X,(Z¢(;))) o exp(—%)

. This intro-
duces sampling noise and also makes L Aps (X, ¥; ¢) non-differentiable. Alternatively, one could
update ¢ by employing policy gradient rule for non-differentiable rewards as in SVDD-PM (Li

et al., 2024). However, this leads to sparse updates and inferior sample quality as shown in Table

Differentiability has propelled posterior sampling to achieve state-of-the-art results using continuous
diffusion (Chung et al., 2023; Rout et al., 2023; 2024; Zhang et al., 2025). To restore differentiability
in discrete diffusion, we parameterize X, (z:;)) = Softmax(p;)) with @) = {api( 0 M, €

REXL containing logits 4,955(1.) over the codebook {c; € C} for each position I. We compute the

expected embedding %l =Y epxl L(z4(5)) € R, and then quantize it using LFQ (2) (Yu et al.,

2024): x! = = Qi (X %!) € {—1,+1}9. We then apply the straight-through estimator (Van Den Oord
et al., 2017) to obtain an image X = D(X), X =X+ [X x} .’ where sg denotes the stop-gradient
ly— A3 ).

operator. Finally, we compute the differentiable likelihood as q(y|x, (z(;))) o< exp(—"— 3

Discussion. We minimize the objective (7) at every step ¢ to obtain the optimal logits <p’tk( i) This

ensures that the optimized probabilities x - (z(;)) remain close to the prior predictions Xq(z(;))
while being adapted to the measurements. To the best of our knowledge, this paper takes the first step
towards quantizing the expected codebook entry for posterior sampling in discrete diffusion. This
allows gradients from the measurement loss to propagate through X and update the entire conditional
probability table x,,(z;)), strengthening gradient-based guidance and accurate posterior sampling.

3.2.2 ANCHORED REMASKING

In masked diffusion, the reverse process progressively unmasks tokens. Most discrete sam-
plers (Austin et al., 2021; Chang et al., 2022; Lou et al., 2024; Sahoo et al., 2024; Shi et al., 2024)
choose to unmask tokens in random order. ADLM (Rout et al., 2025a) shows that prioritizing “an
chor” tokens (e.g., nouns or verbs in language, rather than articles or conjunctions) early in the
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Flgure 2: Qualltatlve results on FFHQ and ImageNet for SR (4x) and Gaussmn deblur. Com-
pared to DPS and G2D2, APS yields better results with sharper texture and refined facial features.
For instance, in the third row, APS reconstructs fine strands of the white and brown dog’s fur.
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Figure 3: Qualitative results on FFHQ for linear (top row) and nonlinear (bottom row) inverse
problems. APS and APS-L recover high-fidelity images from severely degraded inputs.

reverse process reduces conditional entropy of the remaining sequence and improves generation
quality. To decode anchor tokens, ADLM jointly trains an anchor network in addition to the stan-
dard denoising network using an anchored NELBO objective. Distinct from ADLM, we propose a
training-free variant of anchored denoising, enabling posterior sampling with a pretrained model.

Let ¢ be a minimizer of (7), resulting in x7; (z;) = {(x%(z;))'}/_, that represents categorical dis-
tributions over tokens at each position ! € {1,..., L} at time step ¢t. Anchored remasking selects
a subset of positions P; C {1,..., L} to decode early. The selection is based on the confidence
of quantized tokens x (as defined in §3.2.1) under the posterior estimate x;(zt). Importantly, the
posterior estimate is a function of the L-length sequence z;, and hence encodes the joint relation
across all tokens; thus, anchored remasking is a function of all tokens, as compared to standard
remasking (Chang et al., 2022; Yang et al., 2025) that depend only on per-token confidence. For-
mally, we compute the confidence of x' as k{ = ((x7(z))",x"), and choose anchor positions as

P, = {1 : k! > 7, }, where ; is an adaptive threshold based on the cosine schedule from MMaDA.
We then update the state by fixing anchor tokens and remasking the rest: z,. = x with probability

Df_;oit if | € P, else m. Once a token is unmasked, it remains fixed in subsequent steps.

Discussion. Diffusion language models tend to be overconfident on low-information tokens such
as articles (“a”, “an” or “the”) or conjunctions (Rout et al., 2025a); similarly, discrete image sam-
plers using mdependent per-token confidence often unmask background pixels first. In contrast, our
method leverages the joint posterior x,(z.) to identify anchor tokens consistent with the measure-
ments. This leads to earlier decoding of informative tokens (e.g., a bird against a flat background),
enabling faster reconstruction and improved likelihood of generated samples; refer §B.3 for details.

4 EXPERIMENTS

Baselines. Since our focus is on discrete diffusion, we first compare against existing discrete pos-
terior samplers: G2D2 (Murata et al., 2024) and SGDD (Chu et al., 2025) (§2). To provide a
comprehensive evaluation, we also include established continuous baselines, both in pixel space
(DPS (Chung et al., 2023), DDRM (Kawar et al., 2022), and DiffPIR (Zhu et al., 2023)) and in la-
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Table 2: Quantitative results on general inverse problems. We report results on two additional
linear (random inpainting, motion deblurring) and nonlinear (HDR, nonlinear blur) tasks. Since
G2D2 and SGDD do not evaluate on these tasks, we compare our discrete sampler against represen-
tative continuous baselines: DPS (pixel-space) and PSLD (latent-space).

T Random Inpainting Motion Deblur HDR Nonlinear Blur
ype Method
LPIPS| PSNRT LPIPS| PSNRT LPIPS| PSNR{ LPIPS| PSNR*
FFHQ
Pixel DPS 0.203 25.46 0.246 24.52 0.264 22.73 0.278 23.39
Latent PSLD 0.221 30.31 0.336 22.31 - - - -
Mask APS (ours) 0.304 27.38 0.317 26.58 0.282 23.89 0.263 27.19
Discrete APS-L (ours)  0.291 28.11 0.298 27.98 0.323 23.56 0.262 28.46
ImageNet
Pixel DPS 0.297 23.52 0.423 18.96 0.503 19.23 0.306 22.49
Latent PSLD 0.337 31.30 0.511 20.85 - - - -
Mask APS (ours) 0.378 24.59 0.410 23.37 0.345 21.92 0.330 24.18

Discrete  APS-L (ours) 0.338 25.39 0.318 25.19 0.346 22.68 0.309 25.35

Reference Style Stylized Output

Reference tyle Stylized Output

Celestial Artwork ~ Carousel Astronaut Bowl of Fruits  Street Art Graffiti Truc Watch Playmobil

Figure 4: Qualitative results on stylization. We present four style—content combinations. For each
case, our APS algorithm conditions on a single reference style image together with a text prompt
to generate the stylized output images. The prompt follows the template: “Generate an image in
[style] style. A [class], high detail, photorealistic.” Here, [style] denotes the reference
style (e.g., Celestial Artwork), and [class] corresponds to the label shown below (e.g., Carousel).

tent space (PSLD (Rout et al., 2023) and ReSample (Song et al., 2024)). This ensures our evaluation
spans both discrete and continuous posterior sampling paradigms.

Benchmarks. We evaluate on the standard inverse problem benchmarks used in prior works. For
high-resolution faces we use FFHQ at 256 x 256 (Karras et al., 2019), and for diverse natural images
we use ImageNet at 256 x 256 (Deng et al., 2009). Performance is measured using three standard
metrics: Learned Perceptual Image Patch Similarity (Zhang et al., 2018) (LPIPS), Peak Signal-to-
Noise Ratio (PSNR), and Structural Similarity Index (SSIM) (Wang et al., 2004). All methods are
evaluated at the same resolution and on the same images following G2D2 (Murata et al., 2024).

Tasks. We consider both linear and nonlinear inverse problems. Following prior works (e.g.,
G2D2 (Murata et al., 2024) and SGDD (Chu et al., 2025)), we evaluate on Super Resolution (SR)
(4x) and Gaussian deblurring on both FFHQ and ImageNet. Additionally, we evaluate on more
linear (random inpainting and motion blur) and nonlinear (high dynamic range (HDR) recovery and
nonlinear deblurring) tasks. Beyond inverse problems, we conduct experiments on training-free
stylization, an emerging area largely dominated by continuous diffusion (Hertz et al., 2023; Wang
et al., 2024; Rout et al., 2025c¢).

To demonstrate scalability, we upsample the benchmark images to 1024 x 1024 and apply our poste-
rior sampler to these scaled images (termed APS-L in discussion below). We defer implementation
details to §B.1 and computational complexity to §

4.1 RESULTS ON LINEAR INVERSE PROBLEMS

Evaluation on FFHQ: Table | (a) shows that our approach outperforms prior discrete diffusion
samplers across both super resolution and Gaussian deblurring tasks. For super resolution, APS
reduces LPIPS by 13.65% and improves PSNR by 2.11%. On Gaussian deblurring, APS lowers
LPIPS by 3.83% compared to G2D2 and raises PSNR by 5.88%. The large variant, APS-L, pushes
performance even further, achieving up to a 31.36% gain over G2D2 in terms of LPIPS. These
results show that our quantized expectation (§ ) and anchored remasking (§ ) strategies not
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only outperform discrete diffusion baselines but often surpass strong continuous-diffusion methods,
such as DiffPIR (which uses pixel-space diffusion) and PSLD (which uses latent-space diffusion),
resulting in higher perceptual and reconstruction quality.

Figure 2 (top two rows) presents qualitative comparisons for super resolution (4 x) and Gaussian
deblurring on FFHQ. DPS produces over-smoothed results with blurry facial details, while G2D2
often introduces artifacts and fails to restore a natural facial structure. Our APS sampler yields
sharper textures and more faithful reconstructions, recovering details such as hair strands, facial
contours, and eyeglass edges with higher perceptual quality. The large variant, APS-L, further en-
hances structure and realism, generating photo-realistic outputs with finer details and fewer artifacts.
These results confirm that APS and APS-L deliver superior qualitative performance on face datasets,
where perceptual fidelity is especially critical.

Evaluation on ImageNet: Table | (b) quantifies that our method achieves consistent improvements
across both SR and Gaussian deblurring tasks on the ImageNet benchmark. For super resolution,
APS reduces LPIPS by 7.16% compared to G2D2 and improves PSNR by 4.74%. On Gaussian
deblurring, APS improves PSNR by 8.81% while maintaining comparable LPIPS. APS-L improves
LPIPS by up to 35.82% compared to G2D2. These results confirm that APS outperforms prior
discrete posterior samplers and often surpasses continuous baselines such as DiffPIR and PSLD,
delivering superior perceptual quality and reconstruction fidelity.

Figure 2 (bottom two rows) shows SR (4 x) and Gaussian deblurring results on ImageNet. Notably,
DPS produces overly smooth outputs with a loss of fine details, while G2D2 introduces struggles
to recover sharp edges. In contrast, APS reconstructs sharper textures (e.g., the fur of the dog and
the feathers of the swan) and yields more natural color. The large variant, APS-L, further enhances
structural fidelity, recovering finer details in challenging regions such as a frog’s skin texture and
a goat’s fur. These examples highlight that our approach achieves superior perceptual quality and
faithful structure reconstruction compared to both pixel-based and discrete diffusion baselines.

4.2 RESULTS ON GENERAL INVERSE PROBLEMS

Table 2 shows that APS generalizes effectively to more challenging linear (random inpainting, mo-
tion deblurring) and nonlinear (HDR, nonlinear blur) inverse problems on FFHQ and ImageNet.
Unlike prior discrete samplers such as G2D2 and SGDD, which were demonstrated only on limited
tasks, APS consistently achieves strong perceptual quality (lower LPIPS) and reconstruction fidelity
(higher PSNR). For instance, on ImageNet motion deblurring APS-L attains 0.318 LPIPS and 25.19
PSNR, substantially outperforming continuous baselines DPS and PSLD. Similarly, in nonlinear
tasks such as HDR and nonlinear blur, APS delivers sharper, more consistent reconstructions, clos-
ing the gap with continuous diffusion while operating within a purely discrete framework. These
results highlight the broader applicability and robustness of our approach compared to existing dis-
crete diffusion samplers. Figure 3 shows the qualitative results of general inverse problems.

4.3 RESULTS ON REFERENCE-BASED STYLIZATION

We compare APS with the discrete diffusion

baseline MMaDA (Yang et al., 2025) and con- ImageReward 7 CLIP-TT DINOT

tinuous methods (shaded ). Table 3 reports ~ [P-Adapter L] tize b

. . . StyleAligned 0.01 0.31 0.85
quantitative results, while Figure 4 shows qual-  j5nSiyle 0.72 0.33 0.72
itative examples. APS improves over MMaDA  RB-Modulation 1.18 0.34 0.73
on ImageReward (Xu et al.,, 2024), CLIP- ~mMMmaDA 0.48 0.33 0.32
T (Radford et al., 2021), and DINO (Caron  APS (ours) 0.63 0.34 0.41

et al., 2021) scores, demonstrating that our pos-
terior sampler unlocks stylization capabilities
absent in the base model. Notably, APS also
surpasses continuous baselines such as IP-Adapter (Ye et al., 2023) and StyleAligned (Hertz et al.,
2023) on ImageReward and CLIP-T, despite relying on a weaker generative prior (Yang et al., 2025).

Table 3: Quantitative results on stylization.

4.3.1 RESULTS ON TEXT-GUIDED BLOCK INPAINTING

We compare our approach against large-scale continuous diffusion baselines: Imagen3 (Baldridge
et al., 2024), Flux (Black Forest Labs, 2024), and HDPainter (Manukyan et al., 2025). As illustrated
in Figure 5, our method generates realistic clothing textures, with stronger alignment to the reference
prompts and fewer artifacts (red boxes highlight failure regions of competing methods). In contrast,
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Ref. Image Imagen 3 HD-painter Prompt

A full-body shot of a
woman with long, straight
black hair and a confident
expression. She is wearing
a vibrant, oversized,
silk-screened graphic
t-shirt, dark wash skinny
jeans, and black combat
boots. The image shows the
t-shirt untucked, hanging
loosely over the jeans. The
background is a clean,
white studio wall.

An image of a man with a

sharp sense of style. He's
wearing a tailored, denim,
long-sleeved shirt, black
slim-fit trousers, and

‘ i ‘ h ‘ Chelsea boots. The image
shows the shirt buttoned all

’ L L L L L
the way to the top for a
more formal and
fashion-forward statement.
The background is a
modern art gallery with
abstract paintings.

Figure 5: Text-guided block inpainting on high-resolution (1024 x512) images. Our approach
(APS) generates prompt-aligned garment completions compared to prior methods. Red boxes high-
light prompt-misalignment in competing approaches. In the first row, the prompt specifies an un-
tucked, oversized T-shirt with vibrant colors—details missed by Imagen 3, Flux, and HD-Painter. In
the second row, our approach correctly buttons the shirt all the way to the top.

Imagen3 and Flux often introduce distorted or inconsistent garment regions, while HD-painter pro-
duces less faithful completions with mismatched styles.

The appendix provides extensive details on our Anchored Posterior Sampling method. We present
the theoretical derivation of variational bounds (§A), all implementation specifics and hyperparame-
ters (Algorithm |, Table 4), and a detailed ablation study (§B.3, Figure 6) demonstrating the impact
of our innovations. We also showcase the superior computational efficiency (Table 6) and numer-
ous additional qualitative results (§B) across complex inverse problems, details of text-guided block
inpainting (§ ), and extended stylization results (Figure 12 and 13).

5 CONCLUSION

We introduce Anchored Posterior Sampling (APS), a training-free posterior sampler with dis-
crete diffusion foundation models. Grounded in our theoretical bounds, APS enables the reuse of
a pretrained denoiser without task-specific retraining. APS is built on two algorithmic innovations:
Quantized Expectation, which provides fine-grained, gradient-like guidance in discrete spaces, and
Anchored Remasking, which adaptively decodes important tokens early in the reverse process. To-
gether, these yield an efficient, scalable, and training-free posterior sampler.

Extensive experiments on linear and nonlinear inverse problems demonstrate that APS achieves
state-of-the-art results among discrete samplers and is competitive with continuous baselines—while
operating at significantly lower inference cost. Beyond inverse problems, APS also unlocks new
capabilities such as training-free stylization, underscoring the flexibility of discrete diffusion models
when paired with effective posterior sampling. We believe this work establishes discrete diffusion
as a practical and scalable alternative for posterior sampling, with promising extensions to video,
multimodal generation, and other structured domains.
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REPRODUCIBILITY STATEMENT

Our experiments are built upon the publicly available MMaDA codebase (Yang et al., 2025). All
modifications and implementation details are described in Appendix B.1l, which includes the pseu-
docode in Algorithm | and the specific parameters used for every experiment. Furthermore, Ap-
pendix provides comprehensive ablation studies and hyperparameter sweeps (Table 4). The
experiments use the widely-used public datasets FFHQ (Karras et al., 2019) and ImageNet (Deng
et al., 2009). The combination of a public codebase and datasets, along with our detailed Algo-
rithm | and description (§B.2), should ensure that our results are readily reproducible.

ETHICS STATEMENT

The proposed method for controlled image editing contributes to the democratization of advanced
image editing. While this has positive societal benefits, we acknowledge the dual-use nature of
generative models and the potential for misuse or misinterpretation of their outputs.

A primary concern arises in the context of inverse problems such as super resolution, inpainting,
and deblurring. Our method generates a plausible, high-quality image, but this output is a sample
from a posterior distribution and does not represent a unique or guaranteed reconstruction of the
original ground truth. A misunderstanding of this core limitation could lead to dangerous assump-
tions, particularly in sensitive applications like forensic analysis, where a generated image might be
misinterpreted as factual evidence. We therefore emphasize that the method’s intended purpose is
to enhance perceptual realism for creative or aesthetic applications, and it is not suitable for tasks
requiring high-fidelity reconstruction or person identification.

In stylization tasks, there is a risk of unintentional information leakage, where details from the source
content image could persist in the stylized output. This could lead to the inadvertent disclosure of
sensitive information that a user did not intend to share.
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A ADDITIONAL THEORETICAL RESULTS

This appendix develops complementary theory for masked discrete diffusion posterior sampling.
We first derive a pathwise variational bound for training a likelihood-tilted reverse process
(Theorem A.1), showing that — log p,,(x|y) is upper bounded by a reconstruction term, a sum of
token-wise KL-divergence terms, and a sequence of measurement likelihood-based tilting terms. We
then specialize this analysis to the fraining-free setting where the token-to-image decoder is shared
between unconditional generation and posterior sampling, yielding a bound for test-time anchored
posterior sampling (Theorem ). We provide theoretical insights drawn from each theorem in
Implication subsections after the corresponding proofs.

Theorem A.1 (Discrete Diffusion Posterior Sampling(DDPS)). Let Zy.1 = {Zt(i)}zT:o with t(i) =
1/T and s(i) = (i — 1) /T be the latent path of a masked discrete diffusion model, and let q(Z.1 |x)
be the forward noising law from (3). Consider reverse kernels and a terminal decoder that factorize
as follows:

T

Pe(X, Z0:1ly) = po(Z1ly) po (%I Z0,y) [ [ o (Ze)| Zeci) ¥) »
=1

with token-wise reverse transitions given by the inference posterior in (4) tilted by the likelihood,
pw(Zé|Zt7 y) = q(Zé|Z§, Xw(Zt)) q(y|xs0(Zt))'
Then, for any (x,y),

—logp,(x]y) < Loprs(X,¥;¢) = Eq(z,.1x) [~ 10g py (%] Z0)]

T L
Qi) — (i) 1l
+ ZEq(Zt(i)‘x) 1w Z CE(x vxga(Zt(i)))l{Z{(i):m}
i=1 v =1
T
=D Eqz o [log alylxo(Zi))] - ®)
i—1

Proof. We present the derivation for sequence length L = 1; the extension to L > 1 follows by
token-wise factorization as in (Sohl-Dickstein et al., 2015). Recall our parameterized reverse kernel
(identical in form to (4) up to a likelihood tilt):

o Cat(ZL; ZV), Z{ #m,
2428 x,(2,)) = i v ©)
q(Zs|Z, xp(Z1)) Cat(Zé; al,g_ao;f,xw(zt) + i_a-: )7 Zg =m.

Starting from the conditional likelihood,

—mmwm:—m/m@ﬁmwwm

9(Zo:1|x,y)

dZo.1.
Q(ZO:1|X7y) ot

- —log/pw(xZo:l\}’)

By the conditional independence of the forward process (the noising path is conditionally indepen-
dent of y given x), we have ¢(Zo.1|x,y) = ¢(Zo.1|x), hence

~ 108y (x]y) = —log By(zo. )| = 7770

pip(x? ZO:I |y)]

Applying Jensen’s inequality,

Po(x, Z0:1|Y)] .

—logp,(xly) < Eq(zo;lx{ B o)
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Using the factorization py, (X, Zo:1]y) = pu(Z1ly) pe(x|Zo,y) Hszl Po(Zs(iy| Zy(s),y) and the
forward process factorization ¢(Zy.1|x) = ¢(Z1|x) H;Tl;l 4(Zs(iy| Z4(s), %), we obtain

pgﬁ(xv ZO:l ‘y)

—lo
s q(Zo.1|x)

T
q(Z1]x) U Zs(iy| Zy(), %)
= —logp,(x|Zo,y) +log ——2 + Y log — 27

v Pe(Z1ly) ; Po(Zs)| Z1iy, ¥)

Taking expectation under ¢(Zy.1|x) yields
9(Z1]x) }
Pe(Z1ly)

A(Zsi)| Z1(i), %) }
Po(Zs(iy| Z1(3), )

—log py, (x|y) < Eq(z0.,1x)[ — l0g pp (x| Z0, y)] + Eq(z1|x>[log

T
+ Z EQ(Zt(i) \X)EQ(Zs(i) |Zt(i)7x)|:10g

i=1

(10)
Expanding the tilted reverse kernel using the parameterization py(Zsi)|Zia),y) =
q(ZS(i) |Zt(i) X (Ziy)) q(y\x¢(Zt(i))), we can rewrite the last term as

A(Zs(i)| Ze(y, %)
A Zs)| Z1iy> %o (Zia)

T
> Bz 0 Ba 2o Ziy ) | 108 p e q(y\X@(Ztm))].
i=1
This yields the final decomposition:

—log py (x|y) < Eq(z0.11x) [ 108 Py (%] Z0, y)] + KL(q(Z1]x) || po(Z1y))

reconstruction + boundary KL

T
+ Z By, %) [KL(Q(Zs(i) 1 Zi(iy: %) | 4(Zs iy | Ze iy, XSO(Zt(i))))}

i=1

per-step KLs

T
- ZEq(zt(i>\x) [log q(y|x,(Zy)))] = Lppps(X, y; ©).

i=1

likelihood tilt terms

The first two groups of terms correspond to the standard masked diffusion posterior NELBO objec-
tive (Sohl-Dickstein et al., 2015; Austin et al., 2021) denoted by:

LpneLBo(X,Y; @) = Eq(ZO:1|x)[ — log py (%[ Zo, Y)]
+KL(¢(Z1]x) [ po(Z1]y))

T
3 Bo(zu b0 KU Za) Zuis ¥) | a(Zai) | Zugoys %o (Zus ) |-

i=1
The remaining likelihood terms,

T

- Z By(Z,1%) [log ‘J(Y|Xw(Zt(i)))] ,
i=1

capture the effect of incorporating observations y into posterior sampling. Thus, the overall objective
is the PNELBO plus a sequence of likelihood corrections at every step.

We now bound the per-step KL terms. Having connected the decomposition to the NELBO, it
suffices to compute, for each step ¢, the divergence

KIUq(Zsy | Zoiy» %) 1a(Zsgiy | Zagays %o (Zaa))) -
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Since masked diffusion induces a two—state posterior at each step (either remain masked or reveal
the data token), we treat the two cases for Zy(;) separately.

Case I: Z;(;; = m. From the masked diffusion forward process (3), when Z,;) = m the true
posterior over Z,(;y has mass

4(Zsiy =m | Zy) = m,x) = 1— ays)

1_ at(i)7 Q( s(1) X ‘ (%) m, X)
Under the model with prediction x,(Z; ;) (a categorical distribution) as in (), the “unmask” branch
is weighted by the model’s probability of the true token, (X, (Z;(;)), ), while the mask probability
is unchanged. Hence,

KUq(Zsiy | Zeoy=m, %) | 4(Zs(iy | Zeoy =m0, %5 (Zy2y)))

Lo i—abm o Ofslm—at(i)
_ (0) g 0w Qal) Z QD) 1y Lo
1T =y 17055%; L= oy %ﬂ*ﬁ;” <X@(Zt(i))»x>
Qs(i) — (i) 1 (i) — Qs(i)
= log = log(x,(Zi (1)), X).
1 — ay) (X (Z4(iy), %) 1=y (o (Zici)) %)

Equivalently, writing the cross-entropy with the one-hot target x as CE(x,X,(Z;;))) =
—log(xy(Z(i)), %),

Qg(3) — Og(;
KUq(Zsay | Zyiy=m,%) | a(Zsiy | Zeiy =m,%,(Zy(3)))) = W

t(i)
CE Zun))-
1— ) (X7X<P( t(z)))

Case II: Z;(;) # m. When the current token is already unmasked, the posterior is deterministic:
( s()—Zt |Z“)7émx)—1 Thus
KL( ( S( | Zt 75 m, X H q( s(z)| Zt(z) 75 m7xtp(Zt(i)))) =0.
Only masked coordinates contribute to the per-step KL, yielding for each step i,
Qi) — Q(s
KL(Q(Zs(i)|Zt(i)7 X) H Q(Zs(i)‘Zt(i)a ti(Zt(z)>)) = 1()770%()() CE(Xa XW(Zt(i)))l{Zz(i):m}'

This recovers the standard masked-diffusion NELBO weighting (cf. (5)): per-step contributions are
cross-entropies at masked positions, scaled by () — a4iy)/(1 — u(;y). Generalizing this to
sequences with length L > 1 yields:

at(’L
1 — at( )

Mn

KL( ( )| Zt(z ) H Q( s(i )| Zt(i)7xip(Zt(i)))) = Zt(z))) {Zt( ,=m}
=1

Combining this with the likelihood tilt terms, we get
Lppps(x,y;¢) =E (Zo 1) [~ 10g Py (x| Z0, y)] + KL( (Z1]x) || po(Z1]y))

s(i) T (i)
+ ZEQ(Zt( i 1%) [ Z CE(x' X, (Zt(z)))l{zf( )_m}]

1—04,5() Py

T
= gz, 1% 08 a(y %o (Zii)))] -

i=1

In masked diffusion Z; is typically the fully masked state or absorbing state, so ¢(Z1|x) is degener-
ate and, with p,,(Z1|y) = ¢(Z1|x), the boundary KL vanishes. Thus,

Lpprs(x,y;¢) =E (zD L[ log py (%] Zo, )]
L

— Qi(4)
+ZE (Zegiy 1) l 1— ay) Z (x! X Zt(z)))l{Zt()m}]

=1

- Z Ey(z, 1% [ 108 4(¥ %0 (Ziay)) ]

i=1
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Furthermore, y imposes a distribution over x from which we wish to sample. However, when Zj is
given then x is uniquely determined by the decoder as x = Dec(Zj). Therefore,

Lppprs(X,y; @) = Eq(ZO 11x) [—log py (x| Z0)]

L
Oé(l
—|—ZE (Zegiy %) 1—Oét d Z (x! x Zt(z)))]-{Zt(l>—m}

- ZEq(zt<i>|x) [log q(y|x,(Zi(i)))]

i=1

which completes the proof of the statement. O

Implications. Theorem provides a principled upper bound on the negative log-posterior likeli-
hood in discrete masked diffusion models.

* Trainable upper bound. The pathwise upper bound Lppps(x,y; ) in (8) provides a prin-
cipled training criterion for discrete diffusion posterior sampling.

* Reduction to standard training when y is absent. Setting the likelihood to a constant (no
measurements) removes the tilt terms and recovers the masked-diffusion training objective:
only the reconstruction term and per-step KL-divergence terms remain.

* Masked-token supervision. The per-step KL-divergence terms vanish on already-revealed
tokens and reduce to weighted cross-entropies on masked tokens, focusing learning signal
exactly where denoising must occur. The weights (cvs(;) — a¢())/(1 — ay(;)) expose how
the noise schedule shapes gradient magnitude.

* Data-consistency via tilt. The additive terms — >, Ey(z, ,, 1x)[log q(¥[x4(Z4(iy))] encour-
age reverse transitions that produce intermediate predictions consistent with the measure-
ment model, integrating task specific information at every denoising step.

* Boundary conditions. With an absorbing mask state, the boundary KL-divergence is
constant (often zero), so optimization concentrates on reconstruction, token-level KL-
divergence terms, and measurement consistency.

* Compatibility with efficient parameterizations. Because (8) is written in terms of token-
wise categoricals, it directly supports time-independent or lightweight parameterizations
(e.g., shared denoisers), helping scalability to long sequences and high resolution.
Theorem A.2 (Test-time Anchored Posterior Sampling). Let Zy.; = {Zt(i)}fzo with t(i) = i/T
and s(i) = (i — 1)/T denote the latent path of a masked discrete diffusion model, and let q(Zy.1|x)
be the forward noising law from (3). Assume the decoder is shared between unconditional genera-
tion and posterior sampling (p,(x|Zy) = pe(x|Zy)), and the unconditional reverse transitions are
parameterized as in (4). Define Lxgrpo(x;0) as in (5). Then, for any (X,y),

—logp,(x]y) < Laprs(x,y;¢),

where

T
Qi) — Qu(s) (x0(Z1(5))5 %)
L i) =L ;0 E Slx 1

aps(%,¥39) = Lxprpo (60) + 3 By(z, ) )l = e () %)

i=1

T
- Z Eq(Z, ) %) 108 4(¥ %0 (Zii)))]-

i=1

Proof. From the proof of Theorem , the conditional likelihood satisfies

4(Z1]x) }

~1 <Eyy ol =1 Zo, E. s [1
ngtp(x‘y) — Q(ZO:II )[ ng¢(x| 0 y)} + q(Z1| ) Og p@(Z1|y)

T
(Zs@)| Zs(iy, %)

JrEE o o E . t.x[log—}.
0(Zeiy |%) ™0 Z s 3y | Zo (i) %) ptp(Zs(i)|Zt(i)7y)

i=1

(1)
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Compute each term inside summation. We now focus on the 7* term inside the summation. Using
the pretrained network pg(Z,(;)| Zy(;)) as given in (4), we decompose the term as:

9(Zs@)| Zi(iy, %)
Po(Zs)| 213, y)

A Zs@)| Zsiy, x) Po(Zs(i)| Zi(i))
= Bq(2.12.) )| 108 DL log e
Po(Zs(iy| Zu(iy) Po(Zs@)| Z1(3), ¥)

EQ(Zs(i)lzt(i)vx)[log

Isolating the first-term as a KL-divergence term, this yields

U Zsi)| Ze(), %)
)

E
at Po(Zs(i)| Za(iy, Y

Zs(i)| Ze(iy %) log

Po(Zs(iy| Z1())
ZKL<Z1'Z,-, Z”Z~>E . | log ———————~—— |,
q( s( )‘ t(4) X) ||p9( ((/)| t(l)) + A(Zsi)| Z1 sy )[ og pg;(Z i)|Zt - )

divergence w.r.t. pretrained network

Since pg(Zs(i)| Zy(;)) is parameterized via the pretrained network prediction x4 (Zy;)), we get

KL a(Za) Zucoys %) |0 Zo) | Zugins X)) = KU 0l Zao) | Zugiys %) | 0 Zco Zagirs %o (Zagi))-

Following the argument of Theorem , we distinguish two cases for Z; ;). For Z;;y = m, the
KL-divergence evaluates to

Qs(i) —

(4
1 — oy CBLx x0(Zun);

KUq(Zs@)| Zigiys %) | 0(Zs()| Z1iay, %0 (Zuiy))) =
while for Z;(;) # m the KL-divergence vanishes. Thus we obtain

4(Zs0)| Z1(5), %)
Eq(Z.0n 2o x| 108 ————"—<
12wl Zee, )[ Po(Zsi)| 213, ¥)

Qi) — Og(4) pG(Zs(i)|Zt(i))
:7CEX Zyin)) 1 emt T E ) | log ———————
1-— e770)) ( XG( t(i))) {Zew=m} USEOLOk )[ ©8 ptp(zs(i)|zt(i)7 Y)

Substituting the above expression in the conditional likelihood (1 1), we get

9(Z1]%) }

~1 <E,py ol =1 Zo, E, s {1
ngtP(X|Y) — Q(Z0;1| )[ ngtp(x‘ 0 Y)] + q(Zﬂ ) Og p<p(Zl|y)

Qs(i) — Qi(4)
+ Z]Eq(zt( ) 1%) 1— (i) CE(X XG(Zt( ))) l{Zt(i)_m}‘|
T
Po(Zs(iy| Zu(iy)
+ D By 2 10Ba(2. ) 2y 0| 108 — (12)
; 1wl PaZew 2 20 Po(Zs)| Zu(i), y)

Expected log-likelihood ratio under g. We now examine the expected difference in log-likelihoods
between the prior and posterior transition distributions under the conditional law of the forward
process. Recall that the reverse transition under our parameterization is

Po(Zs@y| Ze(iy> ¥) = A(Zsi)| Ze(iy s X (Za())) 4(Y X o (Zi(iy))-
Consider the expectation of the log-likelihood ratio under the forward posterior q(Z(;)| Zs(;), X):

P0(Zs(iy| Z1(3))
E ) log ———~~ -~
q(Z‘“(”Z‘(")’x)l o8 Po(Zsi)| Ze(3),y)
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Substituting the definition of p,,, we obtain

E., log P0(Zsi)| Za(iy)
W20 00 (7 0 Zitsys %o (Zuay)) 40y %0 (Zo)

pG(Zs(i)|Zt(i))
=E o Zeeny )| 108 —log q(y|x,(Zy
Q(Zs(z)|Z,(7,)7 )[ q(ZG(z)|Zt(7,)axtp(Zt(z))) ( | KP( t( )))

Po(Zs(i)| Ze))
=E Zs(i)| Ze(iy»x log
9(Zs()| Ze(s) )[ q(ZS(i)|Zt(i)7X<p(Zt(i)))

- Eq(zs(i) IZt(i) ,X) [ lOg q(y|X<P(Zt(7,))) .

Since pg(Zs(iy| Zy(s)) is represented by the network prediction Xg(Z,(;)), we can rewrite the first
expectation as:

Po(Zs(iy| Z1(s))
U Zsiy| Z1(iy> X (Zeiy)

Putting everything together, the expected log-likelihood ratio under g becomes

_E., log W(Zsi)| Zeiiy, x0(Zy(i)))
1Ze( |22y ) W Zsi)| Zotiy, %o (Zy(3))

E(I(Zs(i)lzt(i)vx) log

Po(Zs(i)| Ze(3))
E N Zeisyx) | 108 ————F—"~ (13)
9(Zs()| Ze (i) )[ pga(Zs(i)|Zt(i)ay)
U Zsy| Z1(s), %0 (Z1(3y))
=Eq(2.5)|Zuiy %) | 108 —Eg( 2.2 x) | 1080(Y|Xp(Ze( . (14
U Zs)| Z1iys )[ q(Zs(i)|Zt(i)ana(Zt(i))) U Zsiy| Ze(iyx) (vl <P( f()))

Similarly to the proof of Theorem A.1, we consider two cases to compute the first expectation. Case
I: Z,;y = m. Using the masked diffusion inference posterior derived from (3), when Z;;) = m we

have

4(Zs) = m| Zy;) = m,x) = 1— au

1_ i ; (J( s(2) X‘ t(i) m,x)

Under the pretrained model parameterization (4), the corresponding terms are
1 —aym

4(Zsy = m| Zyiy = m,xo(Zy»)) = 1= .
As(i) — O(i) (

e
1 — Xa( t(z))7x>a

U(Zsy = x| Zy(iy = m,x¢(Zy())) =
and likewise with x,(Zy;)) replacing x¢(Z,(;)) for our parameterization. Hence,

A Zsiy | Zeiy = m,x9(Zy(s)))
Q(Zs(i) |Zt(i) =1m, X«p(Zt(i)))
1—as) Qs (4) — Ol (4) )
_ 1z log Lavn | @s) ~ N(i) T—ayi) (x6(Z1i)) %)

_ ) l—o _ ) Qs (i) — Ot (i
L= aus) ?i((:)) L=y 41(_)%(;() (X (Zy(i)), %)

Qi) — Qu(s) (x0(Zy(5)), x)
1 — ay) (X (Zy(3)), %)

EQ(Zs(i) | Zi(iy=m,x) log

Case II: Z,(;) # m. When the token is already revealed, the posterior is deterministic:
A(Zsiy = Ziiy | Zusy # m,x) = 1,
and this form is identical for the x¢- and x-parameterized posteriors as well:
W Zsiy = Zeiy | Zyiy 2 M, %0(Zi(i))) = 1, @(Zsiy = Zuiy | Zey # M, X (Zyiy)) = 1.
Therefore,

A Zsiy | Zuiy, X0 (Zeiy))

E , mx) | 1o =0
1(Zetiy | Zu7mix) | 108 A(Zsiy | Zi(iy> X (Zy(3)))
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Combining both cases,

E., iy log A Zseiy | Zu(iy> %0(Zaiy)) _ Os) ~ () | <X9(Zt(i))7x>1 L
1Zs | 22y ) A Zsiy | Ziiy, Xo(Z1iy)) 1=y (X (Zi(3)), X) {Zew=m}
which simplifies (13) as follows:
Po(Zsi)| Ze(iy)
E Ny )| log ———————
4(Zsiy| Zi(ays )[ pcp(Zs(i)IZt(i)ay)
sy — iy o (Xo(Zyiy), X)
= 1 1 L —E ) ) ! e . 15
1— o) 0g (x@(Zt(i)),x> {Z4iy=m} a(Zs(3)| Zs(sy,x) | 108 q(y[xe( t(z))) (15)
Substituting (15) into (12), the conditional likelihood can be bounded as
q(Z1]x)
_ < _ AEL)
log py (x[y) < Bq(zo.1 1) [~ l0g e (x| Z0, ¥)] + Eq<zl|x>[10g P Zl|y)}
Qs Qg
+ ZE (Zoeiy %) 1()_ @ CE(x, x0(Zy(3))) 1{Zt(7¢)—m}‘|
Qt(4)
+ iE E log —pe(Zs(i) ‘Zt(i))
Ziiylx Zsiy| Zi(iyx
e A(Zi(3)|x)=a(Zs (i) | Z1(3) %) (Zs(i)|Zt(i)7Y)
q(Z1]x)
=Eq(zoa1x) | logps(x|Zp,y)] + E lx[logi}
q(Zo:1| )[ o(x[Z0,¥)] q(Z1x) po(Z1ly)
= i (6) — (i)
Qg(; t
+ ZEq(Zt(,->\x) 1— i) CE(X xe(Zt(z))) 1{Zt(i>_m}‘|
i=1 L
- _
Qs(i) = Qs (x0(Z1(3)), )
E log 1 _
+ z_: a(Zy(iylx) I 1— ay <ti(Zt(i))7x> {Zi(iy=m}
- ZEqwt(i)\x) log q(y x4 (Zia)) | (16)

where in the last step we use the fact that ¢(y|x,(Z;(;))) is independent of Z;y given Zy;).

Treatment of boundary conditions. In masked diffusion the terminal state Z; is absorbing (all-
mask), hence ¢(Z1|x) = p,(Z:|y) and the boundary KL-divergence vanishes. Thus (16) becomes

—1og Py (X[y) < Ey(zon o] — l0g Py (x| Z0, )]

T
Qs(i) — Q(i)
+ ZEq(Ztm\x) [1_ CE(X7 XO(Zt(i))) 1{Zt(i)_m}]

i=1 (i)

+2T:E ; Qs(i) = (s log (x0(Z1(3)),x) Ly
- q(Z(ay|x) 170%() <ti(Zt(i))7x> {Zi@iy=m}

- ZEq(Zt(i)\x) [log q(y|x4(Zui)))]- 17

i=1
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Since x is a deterministic function of Zj, the reconstruction term in (! 7) simplifies to:

—log p,(x]y) < ]Eq<zo\x)[ — log py,(x|Z0)]

Qs(i) — Qe(d)
+ ZE (Zi(iy %) [ 1— a0 CE(x, x0(Z1(3))) 1{Zt(1)—m}]

Qi) — (i) (x6(Z1(i)), %)
E x 1 1 C—m
+ Eﬁ: a(Zy(sy|x) [ 1— 0og <X¢(Zt(i))7x> {Zi(iy=m}

- ZEq(Zm)\X) [log a(y|x,(Zi(i)))]- (18)
i—1

Finally, the decoder is same for unconditional generation and posterior sampling, i.e., p,,(x|Zy) =
po(x|Zp). Substituting this property in (18) yields

—log p,(xly) < ]Eq(Zo ol = log po(x]Zo)]

Qi) ~ Qi)
+ZE zmx)[ T oy Coxexe(Zi) 1{zt(i>—m}]

Qig(i) — Qi) (x6(Z1(i)), %)
+ ZEQ(Ztu)\X) [ 1_ log 1{2,)=m}

Qs (%o (Z1(3y), %)
T
- ZEq(zt(,-,>\x) [log (¥ x4 (Zi(1)))] = Lars(x,¥; ) (19)
i=1
Since CE(X7 xe(Zt(i))) = —log(), the first two terms in (19) equals to the standard NELBO (5)
used to train the masked diffusion model. Therefore, we have
T
Qs(i) = (i) 4 (Xo(Zin)), X)
Laps(x,y;¢) = LneLo(X:0) + ) Eq(z,1x log 1(z,y=m
; L I T T R
T
= Eaz, 0 [log a(yxe(Zin)],
i=1
completing the statement of the theorem. O
Implications. Theorem establishes a principled upper bound on the negative log-posterior

likelihood when posterior sampling is performed without additional training.

* Reuse of pretrained objective. The bound Laps(x,y; @) is expressed in terms of the stan-
dard masked diffusion LxgrBo(X;#), meaning that posterior sampling can be performed
using pretrained masked diffusion models.

* Adaptation gap. The log-ratio correction term quantifies the mismatch between the pre-
trained transitions x4 and the proposed posterior transitions x,,, effective only at masked
positions. This isolates the additional cost of posterior sampling.

* Measurement consistency. The final summation enforces alignment with the measurement
likelihood ¢(y|x,(Zy(;))). ensuring that the sampler accounts for observations at each dif-
fusion step.

* Boundary conditions. As in the training bound, the absorbing mask state renders the bound-
ary KL-divergence constant (often zero), so the effective objective simplifies to the pre-
trained NELBO plus adaptation and measurement terms.

o Test-time posterior sampling. Together, the decomposition clarifies how posterior sampling
can be performed without retraining: start from the pretrained NELBO and add corrections
for model adaptation at masked positions while incorporating measurements via tilting.
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B ADDITIONAL EXPERIMENTS

This section provides supplementary details and evaluations of our APS method. We first describe
implementation details for both inverse problems and stylization (§B.1), followed by algorithmic
analysis including pseudocode and hyperparameter studies (§B.2). We then examine the impact of
design choices in our ablations (§B.3), evaluate using the same prior (§B.4), and discuss computa-
tional complexity (§B.5). Next, we outline the compared baselines (§3.6) and summarize bench-
marks and metrics (§B.7). Finally, we present additional results (§B.8) and limitations (§B.9).

B.1 IMPLEMENTATION DETAILS
B.1.1 INVERSE PROBLEMS

For inverse problems, we implement our test-time optimization using two main configurations cor-
responding to the APS (512 x 512) and APS-L (1024 x 1024) results reported in §4. The full
reverse sampling process is discretized into 15 time steps following a cosine mask schedule, using a
classifier-free guidance scale of 3.5.

At each of the 15 reverse steps, we perform an inner optimization loop to ensure measurement
consistency. This loop consists of 100 optimization steps using the Adam optimizer with a learning
rate of n = 1.0. The total loss function is a weighted sum of three components: (1) a reconstruction
loss, which could be L1 or L2 norm; we choose L1 norm |y — A(x)||; because it is known to
generate sharper quality (Van Den Oord et al., 2017; Yu et al., 2024), (2) a VGG perceptual loss
with a coefficient of X\, = 1073, and (3) a prior preservation loss Lpsior (X (24(:)) X0 (24(5))) =

-1 Zlel log(x,(Z4()), xe(zt(i))ﬂ{zi(i):m} with coefficient App, = 1074, To reduce the number

of hyper-parameters introduced by our Algorithm 1 and ensure fast convergence, we make the
following practical implementation choices:

* initialize x,(2(;)) With xg(z(;)): Lines 6 and 9,
* choose a small decaying learning rate n = 1.0 in Adam: Line 15,

* optimize for a fewer iterations 7' = 15 and M = 100: Lines 5 and 8.

This has an equivalent effect of prior preservation. We note that the optimization loop (Lines 8-16)
computes gradients with respect to the logits (. This is significantly cheaper than the expensive
backpropagation steps through denoising network (here, 8B parameters for MMaDA) used in prior
continuous diffusion approaches (Rout et al., 2023; 2024; Chung et al., 2024). Thus, we set A, = 0
by default. Alternatively, one could initialize ¢ with all zeros or randomly and set M very large
until convergence while enforcing the prior preservation loss (App, 7 0) in Line 14.

The specific parameters for each degradation operator A(-) vary by task, with all measurements
simulated by adding Gaussian noise of o = 0.05. For super resolution, we use a 4x downsampling
factor. For Gaussian Deblurring, the operator is a Gaussian kernel of size 61 x 61 with a standard
deviation of 3.0. Motion Deblurring uses a kernel of the same size with an intensity parameter of
0.5 (on a scale of O for linear to 1 for highly nonlinear), corresponding to a moderately nonlinear
motion path. For Inpainting, we randomly remove 70% of pixels. Nonlinear Deblurring kernels
are generated using the KernelWizard' model from the bkse~ library. Finally, High Dynamic
Range (HDR) reconstruction is modeled by scaling the image data and clipping the result, following
the operation clip(data x 2, —1,1).

B.1.2 REFERENCE-BASED STYLIZATION

Our approach to training-free, reference-based stylization leverages the core APS framework by
framing the task as a highly nonlinear inverse problem. Let X.s denote the conditional reference
image providing the style. The target measurement, a style vector y, is obtained by applying a
pretrained Contrastive Style Descriptor (CSD) (Somepalli et al., 2024) model as our measurement

1
2
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operator A(-) to this reference image, i.e., y = A(Xef). At each reverse diffusion step ¢, APS aims
to generate a sample whose style matches this target.

As discussed in §3.2, there are two main stages of APS. In the first stage (§ ), we perform a dif-
ferentiable forward pass by computing the expected codebook embedding X! = Zszl ckxfp (Ze(3))
for [ = 1,..., L using the model’s output probabilities x¢(z;)" as initial condition for wi(i). The

straight-through estimator is then used to obtain a differentiable image representation X = D(X).
To guide the optimization, the measurement consistency loss is calculated as the cosine distance
between the style vector of the generated image and the target style vector y as follows:

oo MELY)
Laelen®) = 1= 12Ty

For each reverse step, we perform 100 optimization steps using an Adam optimizer with a learning
rate of 0.1. Gradients from this style loss are backpropagated through the frozen VQ-VAE decoder
D(-) and the straight-through estimator x to update all the entries of the conditional probability table
by directly updating the logits ¢1(;) = {¢}(;) }r-

In the second stage (§ ), the posterior estimate x,(z(;)) obtained from the first stage is used
adaptively unmask anchor tokens in the sequence. Both the processes continue over 15 total steps
following a cosine mask schedule. The fully unmasked sequence satisfies the stylistic constraints
without requiring any task-specific retraining of the foundation model.

B.1.3 HIGH-RESOLUTION INFERENCE

To demonstrate the scalability of our method, we experiment with a higher-resolution setting. For
a fair comparison on our 256 x 256 benchmark, we follow the upsampling protocol described in
G2D2 (Murata et al., 2024). Specifically, for both our standard (512 x 512) and large-scale (APS-L,
1024 x 1024) models, we first upsample the benchmark images to the model’s native resolution be-
fore applying the forward operator. For the APS-L configuration, this increases the number of visual
tokens by a factor of four (from 1024 to 4096)°. The Transformer-based MMaDA (Yang et al., 2025)
model accommodates this by processing a longer sequence without architectural changes. After the
high-resolution reconstruction is complete, we downsample the output back to the benchmark’s na-
tive 256 x 256 resolution for evaluation. As demonstrated in our experiments (§4.1, §4.2), this
approach further improves performance, achieving substantial gains in both PSNR and LPIPS.

B.2 ALGORITHM DETAILS

Algorithm | details our APS procedure. The process begins with a fully masked latent space, z1,
and iteratively refines the image over T reverse diffusion steps. Each step features an inner opti-
mization phase designed to align the model’s predictions with the given measurement y. To enable
gradient-based optimization through the discrete quantization step which assigns each dimension of
an embedding to its nearest value in {—1,1} we employ the straight-through estimator (STE) via
the stop-gradient operator [ . }Sg

This optimization is guided by a composite loss function. For reconstruction, we primarily use
the Mean Absolute Error (MAE, or L1 loss), which we find produces perceptually superior results
compared to the Mean Squared Error (MSE). While MSE corresponds to maximizing the Gaussian
log-likelihood, MAE is typically more robust. This is supplemented with a VGG perceptual loss to
enforce similarity in the features extracted from the measurements, further improving visual quality
in the image space”. Once the optimization at a given step is complete, the Anchored Remasking
strategy uses the tilted measure to estimate confidence assigned to the token chosen via quantization.
This is followed for each position to selectively unmask tokens for the next iteration.

To determine the optimal weight for the perceptual loss, we conducted an ablation study on its
coefficient, A,. As shown in Table 4, a value of 10-3 provides the optimal trade-off between recon-
struction fidelity (PSNR) and perceptual quality (LPIPS) across our benchmarks.

3The visual tokenizer (Yu et al., 2024) used in MMaDA (Yang et al., 2025) uses 16x downscaling, generat-
ing 1024 = 32 x 32 tokens for an image of size 512 X 512.

*The LPIPS metric measures visual quality in the image space.

26



Preprint

Algorithm 1: Test-Time Anchored Posterior Sampling (APS)

1: Input: Diffusion steps 7', measurement y, denoiser xleogits(o), operator A(-), decoder D(+),
Codebook C = {ci } |, Lookup-Free Quantizer Qj,.

2: Tunable parameters: Optimization steps M, learning rate 7, loss coefficients Ay, Ac.
3: Qutput: Reconstructed image Xy
4: Tnitialize latent state z; <+ {m}* (all masked)
5: fori =1to T do
6: @< xleoglts(zt(i)) > Quantized Expectation §
7o Xg(24(5)) = Softmax(xlaoglts(zt(i))
8: form=1to M do
9: X, (24(s)) = Softmax(p)
10: X Zszl CrXy(Ze(i))
11: x = Qugq(X)
12: XX+ [x - %]
sg
13: x < D(x)
14: L+ ‘Cmeasurement (-A()A()7 y) + Ap‘cp‘:‘lrce]:)tual (-A()A()a y) + )\ppﬁprior(xga (Zt(i))7 X9 (Zt(z)))
15: ¢ < Adam(p, VL, n)
16:  end for
17: x7,(z4(;y) = Softmax(p) > Anchored Remasking §
18:  X* « Zle ckX;(zt(i))
19:  x = Qipq(X¥)
20: Kl (X (2t x!) forl=1,... L
21: Pt(i) —{l: Kb > Tt(i)}
22:  z4(; + UpdateState(zy(;, X, Pyiy)
23: end for
24: Xfinal < D(Zo)
25: return Xgp,)

Table 4: Hyperparameter sweeps on perceptual loss coefficient (\;) on ImageNet and FFHQ.
Highlighted rows denote the chosen setting (1e-3), which offers a trade-off among perceptual quality
(LPIPS), distortion (PSNR), and structure (SSIM).

(a) ImageNet (b) FFHQ
Ap LPIPS| PSNR?T SSIM 1 Ap LPIPS] PSNRT SSIM 1
0.0 0.416 23.98 0.652 0.0 0.311 27.32 0.801
le-5 0.402 24.05 0.658 le-5 0.301 27.40 0.803
le-4 0.380 24.06 0.655 le-4 0.268 27.67 0.812
le-3 0.334 23.61 0.639 le-3 0.247 26.61 0.781
le-2 0.325 22.06 0.566 5e-3 0.252 24.90 0.729
S5e-2 0.328 21.44 0.543 le-2 0.256 24.49 0.715
le-1 0.327 21.29 0.539 le-1 0.260 23.44 0.692

Effect of perceptual loss Coefficient. Table 4 reports the effect of varying the perceptual loss co-
efficient on ImageNet and FFHQ. Small weights (10~°, 10~%) only marginally improve perceptual
quality over the baseline, while larger weights (10~2, 10~1) overly emphasize perceptual similarity
at the cost of distortion and structure. A coefficient of 10~3 provides the best balance: on ImageNet,
it reduces LPIPS from 0.416 to 0.334 while maintaining PSNR 23.61 and SSIM 0.639, and on
FFHQ, it achieves the lowest LPIPS (0.247) with a slight drop in PSNR (26.61) and SSIM (0.781).
We therefore adopt 10~ as the default across datasets. Notably, our approach introduces only this
single hyperparameter, whereas G2D2 relies on multiple carefully tuned schedules (e.g., four dif-
ferent coefficients) that must be re-optimized for each task. In contrast, we use the same setting for
all inverse problems, underscoring the robustness and simplicity of our posterior sampler relative to
prior discrete diffusion methods.
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Ground Truth VQ-VAE Recon. APS (ours)

t=0/15 2/15 4/15 6/15 8/15 10/15 12/15 14/15

Figure 6: Ablation study of design choices in APS. We study the posterior sampling problem with
the input of the noisy image of a bird (top row, third image from left). In the base case of using
MMada (second row), since it does not take an image as an input (but only text), the final image is
inconsistent with the noisy input image (image of person instead of bird). Thus, this shows the effect
of standard remasking, where high-confidence background tokens are unmasked early. The third
row (APS-I) adds quantized expectation, which mitigates sampling bias and improves consistency
with the measurement, but still relies on prior-based confidence remasking. This results in blurry
reconstructions. Finally, the fourth row (APS-II) combines quantized expectation with anchored
remasking, preserving optimized anchor tokens while remasking uninformative background tokens.
This combination yields the most stable and measurement-consistent generations, as discussed in
§B.3. Indeed, we note that best case one could hope for is the direct VQ-VAE reconstruction (top
row, second from left) of the Ground Truth image (top row, leftmost). We observe that APS (top
row, rightmost) is comparable in quality to the VQ-VAE reconstruction.

Prompt: “A very high quality image, natural looking”

B.3 ABLATION STUDY

To better understand the impact of our algorithmic innovations, we conduct a systematic ablation
study on ImageNet SR (4 %), as shown in Figure 6 (top row). Our analysis focuses on three core
design choices: (i) standard remasking, which highlights the limitations of confidence-based token
selection under the prior; (ii) quantized expectation, which addresses sampling bias and improves
measurement consistency; and (iii) anchored remasking, which preserves informative tokens iden-
tified by optimization while suppressing spurious high-confidence background tokens. Together,
these ablations disentangle the contributions of each component, providing both theoretical insight
and qualitative evidence (Figure 6) into how APS achieves stable and measurement-consistent pos-
terior sampling.

B.3.1 EFFECT OF STANDARD REMASKING

Standard remasking in MaskGIT (Chang et al., 2022) and MMaDA (Yang et al., 2025) proceeds
as follows. At each iteration, the base denoiser produces a distribution over all tokens xe(zt(i)) =

{x})(z4(s)) }, given the current partially unmasked sequence z;. Sampled tokens x = {x'}[ | are
drawn independently at each position, and previously unmasked tokens are carried over to the next
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state z,. For masked positions, the confidence of each sampled token x' is defined as
l l l
Ky = (Xp(2Ze(2)), X)-
Tokens to unmask are then selected based on an adaptive threshold schedule (e.g., cosine),
Py ={l:kl>7},
which favors unmasking the most confident tokens under the prior distribution x4(z).

In language generation, this corresponds to unmasking frequent, low-information tokens (e.g., ar-
ticles or conjunctions) (Rout et al., 2025a). Analogously in images, the model tends to unmask
background regions first, since they dominate training statistics and are easier to predict. As a result,
informative foreground tokens remain masked until late in the process, limiting semantic guidance
and increasing conditional entropy.

Qualitatively, Figure 6 (second row) illustrates this phenomenon. While the model confidently un-
masks background tokens early, the salient object is revealed only much later, highlighting the limi-
tation of standard remasking for posterior sampling.

B.3.2 EFFECT OF QUANTIZED EXPECTATION

Standard remasking suffers from two key issues: (i) sampling bias, and (ii) independent token-wise
confidence. When sampling tokens directly from the unconditional distribution x4(z:), the model
may pick unrelated or spurious tokens, which—once unmasked—remain fixed in all future steps.
This introduces inconsistency and often locks the model into poor generations.

To address this, we propose quantized expectation (§ ). Instead of sampling, we tilt the uncondi-
tional distribution xg¢(z;) towards the measurement likelihood, obtaining an approximate posterior
X,(z¢). We then optimize in the span of codebook embeddings by treating the tilted probabili-
ties as coefficients in a linear combination and passing their expectation through the decoder us-
ing a straight-through estimator. The resulting embedding is then quantized back to the nearest
valid token. This procedure implicitly maximizes the measurement likelihood, avoids sampling
noise, and enables the discovery of tokens with zero prior probability mass but strong measurement
consistency—leading to a better posterior sample.

We treat such tokens as “anchor tokens,” since they minimize reconstruction error and provide crit-
ical guidance under the measurement operator. As shown in Figure 6 (third row, APS-I), quantized
expectation corrects sampling bias and yields reconstructions that remain consistent with observa-
tions throughout the denoising trajectory.

B.3.3 EFFECT OF ANCHORED REMASKING

A limitation of confidence-based remasking under the prior is that anchor tokens, obtained through
our optimization procedure, may receive near-zero probability mass under x4 (z:). As a result,
the model would discard these informative tokens in favor of background tokens, which the prior
predicts with high confidence. This reintroduces the very bias we aim to avoid.

To address this, we compute token confidence using the posterior estimate x,(z;) rather than the
unconditional prior. In this way, anchor tokens identified via quantized expectation are preserved,
while low-likelihood background tokens are remasked. Qualitatively, this effect is evident at ¢ =
6/15 in Figure 6 (fourth row, APS-II): unlike the standard prior-based strategy (second row), which
prematurely unmasks background pixels, our approach commits to anchor tokens aligned with the
bird’s body. This ensures that the background (blue sky in the measurement) is correctly down-
weighted, as it is inconsistent with the prior white background generated by xy. Subsequent steps
therefore refine the image conditioned on these anchor tokens, reducing conditional entropy and
producing reconstructions that remain faithful to the measurements.

B.4 EVALUATION UNDER IDENTICAL DISCRETE DIFFUSION PRIOR

We compare APS to G2D2 using the official G2D2 codebase (§B.6) on 100 images from the FFHQ
validation set. Both methods use an identical compute budget: 100 reverse diffusion steps, each
with 30 inner optimization steps. As shown in Table 5, APS consistently improves over G2D2
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Table 5: Quantitative results for super resolution (4 x) on FFHQ. APS consistently outperforms
G2D2 across standard evaluation metrics: PSNR, SSIM and LPIPS while the same base generative
model VQ-Diffusion. This also shows compatibility of our approach with uniform (mask) discrete
diffusion.

Method PSNR1 SSIM{ LPIPS

G2D2 25.46 0.717 0.350
APS (Ours)  26.80 0.759 0.310

Table 6: Quantitative results on sampling efficiency of continuous and discrete samplers.
PDM/LDM denote pixel-/latent-space continuous diffusion models, respectively; VQ-Diffusion

and MMaDA are discrete diffusion models. Rows shaded report runtimes on a single

NVIDIA A6000 GPU copied from G2D2 (Murata et al., 2024); rows shaded are measured

by us on a single NVIDIA A100 GPU.
Method Model Resolution GPU (GiB) Time (s) #Steps
DPS (Chung et al., 2023) PDM 256 10.7 277 1000
DDRM (Kawar et al., 2022)  PDM 256 5.8 4 20
PSLD (Rout et al., 2023) LDM 512 20.9 738 1000
ReSample (Song et al., 2024) LDM 256 7.1 555 500
G2D2 (Murata et al., 2024) VQ-Diffusion 256 4.7 194 100
DPS (Chung et al., 2023) PDM 256 10.7 180 1000
LDPS (Rout et al., 2023) LDM 256 15.4 190 1000
PSLD (Rout et al., 2023) LDM 256 15.5 194 1000
G2D2 (Murata et al., 2024) VQ-Diffusion 256 4.7 107 100
APS (ours) VQ-Diffusion 256 4.6 106 100
APS (ours) MMaDA 256 19.2 55 15
PSLD (Rout et al., 2023) LDM 512 20.9 720 1000
APS (ours) MMaDA 512 26.2 121 15
APS-L (ours) MMaDA 1024 51.8 484 15

across all metrics: PSNR improves from 25.46 to 26.80, SSIM from 0.717 to 0.759, and LPIPS
decreases from 0.350 to 0.310. Since the generative prior and compute budget are identical, these
performance gains arise purely from our algorithmic innovations: quantized expectation (§ ),
anchored remasking (§ ), and the use of a perceptual loss. This experiment demonstrates that
APS is not only effective but also compatible with both mask-based and uniform discrete diffusion
frameworks.

B.5 COMPUTATIONAL COMPLEXITY

Analysis. Table 6 highlights the sampling efficiency of our discrete posterior sampler (APS) relative
to both continuous-diffusion baselines and the prior discrete sampler G2D2.

Against continuous (pixel/latent) diffusion. Pixel-space samplers (DPS, DDRM) either require very
long Markov chains (e.g., DPS: 1000 steps, 277 s) or sacrifice quality when shortened; latent-space
samplers (PSLD, ReSample) still need 500—1000 steps and hundreds of seconds per image at 256 x
256-512 x 512 resolutions (e.g., PSLD: 738s at 512 x 512). In contrast, APS runs with only 15
reverse steps on the MMaDA backbone: 55s at 256 x 256 and 121s at 512 x 512 on a single
A100—66 % shorter chain for comparable or better perceptual quality. Crucially, at 512 x 512 APS
matches the quality of PSLD as shown in Table | while being ~ 6 x faster (PSLD: ~720-740s vs.
APS: 121 s). When scaling the sequence length to L=4096 tokens (corresponding resolution 1024 x
1024), APS-L completes in 484 s and becomes significantly more accurate: ImageNet Gaussian
deblur improves by 22.7% LPIPS and 9.6% PSNR over PSLD—with ~1.5x less time.
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Against prior discrete diffusion. Under the same budget, APS matches or improves G2D2’s runtime
while yielding better reconstructions: at 256 x 256 with VQ-Diffusion both methods use 100 steps,
but APS yields higher quality (see Table 5); with the stronger MMaDA prior at 512 x 512, APS
achieves consistently better LPIPS/PSNR as discussed in §4. Moreover, our 1024x 1024 configu-
ration (APS-L) demonstrates better test-time scaling behavior compared continuous diffusion: we
keep 15 steps and still obtain substantial quality gains at reasonable cost (484 s).

Importantly, continuous methods struggle to match this performance without prohibitive runtimes.
PSLD (Rout et al., 2023) already takes nearly 12 minutes to process a single 512 x 512 image and
more complex methods such as P2L (Chung et al., 2024) take around 30 minutes for the same resolu-
tion. Therefore, training-free posterior sampling using continuous diffusion at very high resolutions
such as 1024 x 1024 becomes computationally prohibitive.

B.6 COMPARED BASELINES

We compare our method against state-of-the-art posterior samplers using pixel-/latent-space contin-
uous and discrete diffusion models. Each baseline is evaluated under the same data as ours. We
follow the experimental setup from G2D2 and reuse the baseline implementations to ensure a fair
comparison. To address the resolution mismatch between our model and the benchmark datasets, we
adopt the protocol from G2D2 (Murata et al., 2024). The benchmark images are first upsampled to
match the input resolution of our base model MMaDA (Yang et al., 2025). The forward corruption
operator and our posterior sampling method are then applied in this high-resolution space. Finally,
the resulting output is downsampled to the original 256 x 256 resolution for a fair evaluation. A
brief description of each baseline and links to available source code are provided below:

e DPS (Chung et al., 2023): A continuous diffusion-based method operating in
pixel space that solves noisy inverse problems by employing a one-step gradi-
ent update in the pixel domain. Source:

* DDRM (Kawar et al., 2022): A continuous diffusion-based method in pixel space,
evaluated using the same base models as DPS. Source:

* DIiffPIR (Zhu et al., 2023): A pixel-space continuous diffusion-based method for plug-and-
play image restoration. Source:

* DAPS (Zhang et al., 2025): A continuous diffusion-based method that employs a decoupled
noise annealing strategy to solve inverse problems. Source:

e PSLD (Rout et al., 2023): A latent-space continuous diffusion method that solves inverse
problems by performing a one-step gradient update in the latent space and optimizing to-
wards the fixed point of a VAE. Source:

» ReSample (Song et al., 2024): A continuous latent-space diffusion method that enforces
a hard data-consistency constraint during sampling. Source:

* G2D2 (Murata et al., 2024): A discrete diffusion posterior sampler that uses a star-
shaped noising process and Gumbel-Softmax continuous relaxation to enable gradient
guidance in discrete space. We use the source code with the exact implementation and
hyperparameters provided in the original paper. Specifically, we use 100 reverse diffu-
sion steps and 30 optimization steps per reverse step. The learning rate and the coef-
ficient for the KL-divergence loss are scheduled logarithmically, as proposed. Source:

* SGDD (Chu et al., 2025): A discrete diffusion posterior sampler that uses a split
Gibbs sampler, reweights probabilities by Hamming distance, and employs rejection
sampling via Metropolis—Hastings.  Source:
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B.7 BENCHMARKS & METRICS

The APS method is evaluated on standard inverse problem benchmarks and is also shown to gen-
eralize to more complex tasks, including non-linear inverse problems and training-free stylization.
The evaluation uses two main datasets to cover diverse image types and resolutions, with perfor-
mance measured using Learned Perceptual Image Patch Similarity (LPIPS) ({: lower the better),
Peak Signal-to-Noise Ratio (PSNR) (1: higher the better), and Structural Similarity Index (SSIM)
(1: higher the better).

FFHQ (Flickr-Faces-HQ) (Karras et al., 2019):

* Dataset Focus: High-resolution face images.

» Evaluation Set: To maintain a fair comparison with prior work, specifically SGDD (Chu
etal., 2025), G2D2 (Murata et al., 2024) and DAPS (Zhang et al., 2025), our APS algorithm
is evaluated on 100 images (indices 0, 1, . . ., 99) from the FFHQ validation set.

* Tasks: The evaluation includes (1) linear inverse problems: SR (4 x), Gaussian Deblurring,
random inpainting, and motion deblur and (2) nonlinear inverse problems: high dynamic
range (HDR) and nonlinear blur.

ImageNet (Deng et al., 2009):

* Dataset Focus: Diverse natural images.

* Evaluation Set: Following the experimental setup by G2D2, a subset of 100 images
is selected from the validation set, ensuring diverse class representation by sampling
from classes with indices 0, 10,...,990. The specific image list is publicly available
in the following text file: imagenet_val_lk.txt —

 Tasks: The evaluation includes the same linear and nonlinear inverse problems as in FFHQ.

Licenses and Usage. Both FFHQ and ImageNet datasets used in this work are publicly available and
licensed for research use. FFHQ dataset, including its documentation and metadata, is distributed
by NVIDIA Corporation under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0
International (CC BY-NC-SA 4.0) license. ImageNet data is provided free of charge to researchers,
for non-commercial research and educational purposes.

B.8 ADDITIONAL RESULTS
B.8.1 GENERAL INVERSE PROBLEMS

Figure 7 illustrates super resolution (4 x) results on ImageNet (Deng et al., 2009). Competing meth-
ods—DPS (Chung et al., 2023), DDRM (Kawar et al., 2022), PSLD (Rout et al., 2023), and Re-
Sample (Song et al., 2024)—recover coarse structures but often yield blurry textures or color shifts,
while G2D2 (Murata et al., 2024) sharpens details at the cost of noticeable artifacts. In contrast,
APS produces sharper and more natural reconstructions across both object and animal categories,
closely adhering to the ground truth.

Similarly, Figure 8 shows results for Gaussian deblurring. Continuous methods again capture overall
structure but leave residual blur or noise, and G2D2 (Murata et al., 2024) partially enhances details
yet struggles with fine textures. APS delivers cleaner and more faithful reconstructions, effectively
balancing sharpness and natural appearance across diverse scenes.

Figure 9 compares APS against continuous (DPS (Chung et al., 2023), DDRM (Kawar et al., 2022),
PSLD (Rout et al., 2023), ReSample (Song et al., 2024)) and discrete (G2D2 (Murata et al., 2024))
approaches on FFHQ super resolution. Continuous methods capture overall facial structure but tend
to oversmooth, leaving blurred or distorted skin textures, while ReSample introduces strong artifacts.
G2D2 sharpens details but produces unnatural appearances. APS, by contrast, reconstructs sharper
features with natural skin tones and clean edges, yielding perceptually faithful faces across diverse
examples and demonstrating clear advantages for high-resolution face restoration.

Figure 10 presents Gaussian deblurring on FFHQ (Karras et al., 2019). DPS (Chung et al., 2023)
and DDRM (Kawar et al., 2022) again oversmooth, suppressing fine facial detail; PSLD (Rout et al.,
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GT Input DPS DDRM PSLD ReSample G2D2 Ours

Figure 7: Additional qualitative results for super resolution (4x) on ImageNet. Compared
to continuous baselines (DPS, DDRM, PSLD, ReSample) and the discrete baseline G2D2, APS
produces sharper details and more faithful reconstructions across diverse examples. For instance, in
the second row, the leopard’s eyes are reconstructed with finer details.

GT Input DPS DDRM PSLD ReSample

Figure 8: Additional qualitative results for Gaussian deblurring on ImageNet. Compared to
continuous baselines (DPS, DDRM, PSLD, ReSample) and the discrete baseline G2D2, our APS
sampler achieves sharper textures, less artifacts, and more faithful reconstructions across diverse
examples. For instance, in the third row, both the floral pattern on the outside of the wooden spoon
and the artistic pattern inside it are accurately preserved by our method, whereas most baselines
either miss or misrepresent these details.

2023) and ReSample (Song et al., 2024) introduce ringing and plastic-like skin; and G2D2 (Murata
et al., 2024) struggles to remove noise from the noisy measurements (Input), creating halos along
edges. APS recovers crisp structures such as hair, eyeglass frames, and lip contours while preserving
natural highlights and avoiding artifacts, producing reconstructions that are perceptually closer to the
ground truth and aligned with our quantitative improvements.

33



Preprint

DDRM PSLD ReSample G2D2 Ours

Figure 9: Additional qualitative results for super resolution (4x) on FFHQ. Continuous base-
lines (DPS, DDRM, PSLD, ReSample) generate plausible but oversmoothed faces, while the discrete
baseline G2D2 often introduces artifacts. In contrast, our APS algorithm reconstructs sharper, more
natural faces that closely align with the ground truth. For example, in the second row, our method
successfully recovers the small mole on the person’s left cheek, a detail overlooked by the baselines.

Figure 10: Additional qualitative results for Gaussian deblurring on FFHQ. Our proposed ap-
proach recovers sharper facial details and edges with fewer artifacts (e.g., reduced ringing and tex-
ture distortions), leading to more natural reconstructions. For instance, in the first row, our method
accurately reconstructs the hair strands and their shadow on the face, whereas the prior baselines fail
to capture these details as precisely.

Figure | | shows additional qualitative results on complex linear and nonlinear inverse problems on
FHHQ dataset (Karras et al., 2019), showcasing the performance of both APS and APS-L.

34



Preprint

Motion Deblur

E
el
[
a
3
Q
8
=
=
S
4

Figure 11: Qualitative results on FFHQ for linear (top 4 rows: inpaint and motion deblur) and
nonlinear (bottom 4 rows: HDR and non-linear deblur) inverse problems .
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Figure 12: Additional qualitative results on reference-based stylization. We show four style-
content combinations. For each, our APS optimizer conditions on a single Reference Style image
and a text prompt describing the content to generate the Stylized Output images.

B.8.2 TEXT-GUIDED LARGE BLOCK INPAINTING

Large block inpainting is a particularly challenging setting for generative models, as it requires
filling in large missing regions with semantically coherent and high-fidelity content guided by text
descriptions. One interesting application of large block inpainting is virtual try-on (Han et al., 2018;
Zhu et al., 2024), where models must realistically generate clothing or accessories consistent with
both a reference garment and the overall body pose.

In a typical real-world fashion catalog, the full body images naturally have rectangular aspect ratios.
Since most existing multimodal foundation models are trained on square images (e.g., 512x512 for
MMaDA), we fine-tune MMaDA using our training objective Lpppg derived in Theorem on
a collection of 1024 x512 full-body images. This dataset is curated from a fashion dataset (Zhu
et al., 2024), following preprocessing with segmentation-based cropping and padding to standardize
framing. This adaptation enables our base model to better handle rectangular image structures.
For training, we have randomly selected 100K images from this dataset, providing a diverse and
challenging testbed for inpainting at scale.

Figure 5 shows that our method generates realistic clothing textures, with better alignment to the
reference prompts and fewer artifacts. APS leverages discrete diffusion’s ability to directly reweight
categorical distributions under posterior guidance, that helps generate visually appealing and seman-
tically accurate completions.

B.8.3 STYLIZATION

Figure 12 presents additional qualitative results on reference-based stylization. In each case, our
APS optimizer conditions on a single reference style image and a text prompt describing the desired
content. The outputs demonstrate that APS effectively transfers diverse artistic styles—including
tattoo art, steampunk mechanical, psychedelic art, and tribal tattoo—while preserving semantic fi-
delity to the target content. These results highlight the robustness and versatility of APS in handling
a wide range of style-content combinations.

Figure 13 provides a qualitative comparison of our full method (MMaDA + APS) against the base
model (MMaDA) and state-of-the-art continuous diffusion approaches. This experiment is designed
to demonstrate the novel capability of discrete diffusion models for challenging nonlinear style trans-
fer, not solely to outperform continuous alternatives. We observe that competing methods struggle
to balance style fidelity with content alignment. Training-free methods like StyleAligned (Hertz
et al., 2023) and InstantStyle (Wang et al., 2024) often drift towards generic textures. Conversely,
the training-based StyleDrop (Sohn et al., 2023) tends to overfit to superficial color patterns, which
compromises semantic coherence with the text prompt. Our base model, MMaDA (Yang et al.,
2025), maintains reasonable content fidelity but fails to transfer fine-grained style attributes, such as
material textures or stroke-level details. In contrast, our full method (MMaDA + APS) consistently
produces outputs that preserve the reference style while maintaining strong semantic alignment. For
instance, our result for the “letter” prompt retains the intricate, flowing smoke design, while the
“milkshake” example accurately captures the specified retro diner aesthetic. These results highlight
the effectiveness of APS in discrete diffusion models for complex style transfer tasks.
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Figure 13: Additional qualitative comparison on reference-based stylization. We compare our
full method (MMaDA + APS) with the base model (MMaDA) and several state-of-the-art continuous
diffusion methods across four style-prompt pairs. For each row, all methods use the same Style
Reference image (left) and text prompt (shown below the images).

Table 7: Super Resolution (4x) on FFHQ. Performance comparison of APS against prior works.
Continuous methods are shaded gray. Evaluation over 1000 samples from validation set.

Type Method LPIPS| PSNRt SSIM T
Pixel-domain DPS 0.238 26.07 0.756
DDRM 0.252 28.09 0.804
LDM PSLD 0.282 27.12 0.757
ReSample 0.508 23.07 0.445
Discrete G2D2 w/ star-shaped noise process  0.265 27.29 0.763
G2D2 w/ Markov noise process 0.369 25.15 0.699
Mask APS 0.232 27.81 0.808

B.8.4 ADDITIONAL QUANTITATIVE RESULTS

We perform a larger-scale evaluation for 4x super resolution on FFHQ, extending our analysis
to 1000 samples. Our results are compared against the numbers reported for the same task in
G2D2 (Murata et al., 2024). Importantly, our observation in the main draft extends to the larger-
scale setting and our APS algorithm consistently outperforms G2D2 in all metrics.

B.9 LIMITATIONS

Despite achieving state-of-the-art performance among discrete diffusion samplers on (1) complex
(linear and nonlinear) inverse problems and (2) reference-based stylization tasks, APS exhibits the
following limitations:

1. Tokenizer quality. MMaDA uses MagVIT-v2 (Yu et al., 2024) tokenizer which has limited re-
construction quality compared to modern visual tokenizers (Black Forest Labs, 2024). Therefore,
future improvements in discrete visual tokenizers could directly benefit APS.
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Figure 14: Failure cases of APS. Under extreme circumstances such as out-of-distribution styles or
highly nonlinear measurement operators, our method can sometimes fail, producing over-smoothed
reconstructions or noticeable artifacts.

2. Base model performance. Discrete diffusion backbones are still in an early stage of develop-
ment and, at present, underperform large-scale continuous diffusion foundation models such as
Flux (Black Forest Labs, 2024), SD3.5 (Esser et al., 2024), and Imagen (Baldridge et al., 2024)
in unconditional generative quality. Nevertheless, our theoretical and empirical results indicate
that discrete diffusion shows promising potential for posterior sampling and could, with further
advances, become a viable alternative to the continuous models that dominate current practice.

3. Stylization dependence. The performance of APS in stylization tasks depends both on the pre-
trained discrete diffusion backbone and the quality of the style feature extractor (e.g., CSD). If
the style extractor has not been trained on a particular style, our sampler struggles to transfer it
faithfully, limiting its applicability to out-of-distribution styles.

Failure Cases. Figure 14 illustrates failure cases of our approach in stylization. We observe that
APS sometimes produces over-smoothed outputs when the reference style is out-of-distribution, or
introduces artifacts when the measurement operator is poorly aligned with the pretrained backbone.
These examples highlight opportunities for improving robustness and generalization.
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